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Abstract

In this paper, we evaluate the ability of connected roadside infrastructure to provide traffic predictions on highways
based on the motion of connected vehicles. In particular, we establish metrics to quantify the amount of traffic predic-
tion that is available from roadside units via vehicle-to-infrastructure (V2I) communication. We utilize analytical and
numerical tools to evaluate these metrics as a function of (i) the location of the roadside units along the road, (ii) the
communication range of the roadside units, and (iii) the penetration rate of connected vehicles on the road. We show
that considerable amount of traffic predictions can be achieved even with sparsely distributed roadside units as distant
as two thousand meters and with connected vehicle penetration rate as low as 2%. Based on the proposed metrics,
we develop strategies for deploying roadside units along highways so that traffic prediction efficiency is maximized.
Ultimately, the results of this paper may serve as a guideline for evaluation and deployment of connected roadside
infrastructure.
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1. Introduction

Wireless vehicle-to-everything (V2X) communication technology has the potential to significantly improve the ef-
ficiency of road transportation systems. This technology includes vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication, allowing vehicles and the infrastructure to share information within a few hundred meter radius.
This opens the path for many applications targeting safety and efficiency [1].

In this work, we focus on applications that involve V2I communication [2] between connected vehicles (CVs)
and roadside units (RSUs). The benefits of V2I connectivity has attracted considerable research interest in the past
years [3]. Establishing and maintaining a connected roadside infrastructure, however, is associated with considerable
costs, which makes the RSUs precious resources that should be allocated carefully. Therefore, significant effort has
been devoted in the literature to study the optimal deployment of RSUs so that costs are minimized while selected
performance measures are maximized.

Most of the literature frames the RSU deployment problem in the context of urban environments with dense RSU
arrangements. These works either aim to maximize coverage, defined as the number of vehicles connected to the
RSUs, subject to given cost constraints, or aim to minimize the data delivery delay in communication. For example,
[4] introduces a cost efficient RSU deployment scheme to guarantee that CVs can reach RSUs within certain driving
time. [5] uses binary integer programming to minimize the cost of full coverage. [6] proposes a density-based RSU
deployment policy where RSU locations are designed based on expected traffic density to facilitate emergency ser-
vices with minimal accident notification time. [7] frames the RSU deployment problem so that data delivery delays are
improved. [8] proposes a genetic algorithm for RSU allocation to reduce warning notification times and improve ve-
hicular communication capabilities, while [9] uses a genetic algorithm to maximize the coverage of RSU deployment.
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Table 1: Nomenclature.

Symbol Name Symbol Name
w wave speed T duration of coverage zone
dst standstill distance λ peneration rate of connected vehicles
τ time gap C coverage rate
N number of follower vehicles Ttot total time covered

xRSU location of RSU D distance of two subsequent RSUs
R communication range of RSU Dc critical distance for RSU placement

[10] solves the delay-bounded and cost-limited RSU deployment problem via a binary differential evolution scheme
to maximize coverage. [11] proposes a spatiotemporal RSU deployment framework to optimize coverage ratio, de-
ployment cost, network latency and overhead. [12] pursues the idea of deploying mobile RSUs to maximize coverage
in a cost effective manner using integer linear programming. [13] aims to achieve optimum link flow determination
via RSU deployment based on nonlinear binary integer programming.

Most of the above works address the trade-off between the overall communication quality and the total cost of the
connected roadside infrastructure in urban environments. Providing traffic predictions by the roadside infrastructure,
however, has not yet been considered in the literature as an aspect for RSU deployment. Moreover, RSU deployment
on highways gets less attention in the literature, due to the simple geometry of highways compared to urban road
networks. Yet, designing optimal placement for RSUs along highways is also relevant, as they may provide valuable
traffic predictions for the vehicles passing by. In particular, forecasts about upcoming traffic congestions may be
useful for vehicles to optimize their speed and lane selection. This ultimately leads to better overall efficiency and
throughput of the traffic flow.

In this work, we intend to address these gaps. We introduce a new perspective to the RSU deployment problem.
We view coverage not from the perspective of being able to communicate to at least one RSU at certain locations, but
from the perspective of traffic predictions on highways. We say that a location is covered if it is possible to predict
the future traffic at this location based on the information that the RSUs collect from CVs, and we seek to maximize
coverage in this context.

There already exists a number of works on highway traffic state estimation and prediction that are potentially
suitable for our purpose. [14] describes statistics-based and machine learning-based traffic prediction methods in
the intelligent transportation systems framework. [15] surveys model-driven, data-driven, and streaming-data-driven
approaches for traffic state estimation. [16] presents a strategy for real-time density estimation for traffic networks.
[17] presents a technique to incorporate mobile probe measurements into highway traffic flow models. [18] intro-
duces a short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vector machine with
spatial–temporal correlation. These prediction methods generate location-based predictions that are commonly used
in the field, including the algorithms in routing apps (such as Waze, Google Maps, Here Maps or TomTom).

In this paper, we focus on traffic predictions that instead are based on recording the trajectories of CVs and
processing them via the connected roadside infrastructure [19, 20, 21]. This idea can be found in [19, 22] in the context
of V2V connectivity, whereas now we focus on predictions via V2I communication. The advantage of such V2I
connectivity-based traffic forecasts is that they can be made real time and they can be tailored to needs of individual
vehicles. Thus, they can supplement existing data-intense, location-based, higher-latency traffic forecasts provided
by routing apps. This also makes our traffic prediction-based coverage less demanding in the sense that predicting
future traffic does not require the knowledge of traffic conditions everywhere along the road, that is, full coverage
w.r.t. predictions does not require full coverage w.r.t. communication. Partial observation of the traffic flow already
allows reconstructing, estimating and predicting traffic [23, 24, 25, 26]. We investigate how V2I communication may
facilitate traffic prediction even for sparse penetration of CVs and sparsely distributed roadside infrastructure. We
will show that using our method even a single CV communicating with a single RSU can allow one to provide traffic
forecasts. In order to maximize the amount and accuracy of available traffic predictions, the number and placement
of the available RSUs are crucial, especially because the RSUs have limited communication range. We show how the
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Figure 1: (a) Traffic flow consisting of non-connected (gray) and connected vehicles (blue), where a roadside unit provides traffic prediction for a
location of interest. (b) Illustration of the vehicle trajectories, the RSU’s communication range, and the region where traffic prediction is possible.

placement and communication range of RSUs as well as the penetration rate of CVs affect the availability of traffic
predictions. The presented results can be translated into deployment strategies for RSUs that can collect traffic data
and provide real-time forecasts.

The rest of the paper is organized as follows. Table 1 contains the nomenclature of the paper. Section 2 outlines
our concept about how traffic prediction can be provided in real time for individual vehicles by connected roadside
infrastructure. To conduct a quantitative case study, Section 3 introduces a data set where traffic is simulated based on
a single measured CV trajectory. Section 4 introduces metrics to quantify the amount of available traffic predictions,
and shows how the RSU location, the communication range and the penetration of CVs affect these metrics for the
case of a single RSU. Section 5 extends the results for multiple RSUs and discusses deployment strategies to maximize
the available traffic predictions. Section 6 summarizes the results and concludes the paper.

2. Traffic Prediction via Connected Roadside Infrastructure

In this section, we lay down the basic principles for utilizing roadside units (RSUs) for traffic monitoring and
prediction via vehicle-to-infrastructure (V2I) communication. The method proposed here fundamentally differs from
traditional traffic monitoring that collects information about the flux (flow rate) and the speed at a fixed location using
cameras and loop detectors [27, 28, 29]. Instead, RSUs monitor the motion of vehicles that are equipped with V2X
communication units, referred to as connected vehicles (CVs), while these are traveling in the RSUs’ communication
range. This provides high resolution velocity data along a few hundred meters long section of the highway that is not
possible to obtain using cameras and loop detectors. We demonstrate below that even for low penetration of CVs this
setup allows us to provide traffic forecasts for large spatial and temporal domains.

Consider the scenario in Fig. 1(a) where a string of vehicles is traveling on a highway, consisting of non-connected
vehicles and connected vehicles, as indicated by gray and blue colors, respectively. Let us number the vehicles with
an index n increasing upstream starting from a lead vehicle n = 0 highlighted by black. We seek to provide predictions
about the future state of traffic at a certain location of interest (LoI) along the highway based on the motion of CVs
ahead. For example, if we know that a CV is slowing down due to a traffic congestion downstream the LoI, then we
may predict when and how much the traffic speed will decrease at the LoI due to the propagation of the congestion.
Note that although we focus on prediction provided for a specific LoI, this location is arbitrary, and there could be a
range of locations, or a section of road that receives the prediction.

In order to achieve this goal, we propose to utilize roadside units as depicted in Fig. 1(a) whose communication
range is highlighted by light gray shading. Such infrastructure is able to collect information about the motion of
CVs and compute traffic forecasts from the available trajectories. To this end, consider the trajectories in Fig. 1(b)
where the positions of the vehicles are depicted as a function of time. The trajectories of CVs are highlighted as blue
with thick sections within the light gray shaded communication range of the RSU. These thick pieces of trajectories
indicate the information that is available to the RSU about the motion of CVs. The motion of CVs affects the motion
of other vehicles behind them over specific time intervals such that the vehicles traveling farther behind are affected
later in time. This is illustrated by the blue arrows and gray shading. The information available to the RSUs (thick
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blue trajectories) enables traffic prediction in these specific domains of space and time (dark gray region). If one
intends to predict traffic at a location of interest (here considered to be the horizontal axis x = 0), then predictions can
be made during the time intervals where the dark gray shaded domain intersects the LoI; see thick blue section.

Notice that there are time domains where multiple CV trajectories can be used for predictions despite the fact that
a low CV penetration rate is illustrated in the figure. This is due to the fact that the RSU has a finite communication
range. Our goal is to relate the RSU’s communication range and the penetration rate of CVs to the amount of available
traffic predictions at the LoI. In order to predict the motion of non-connected vehicles, we use continuum traffic
models. In our numerical case studies, CVs are mixed into the flow of non-connected vehicles in a random fashion.
Finally, we also consider scenarios when traffic predictions are generated by multiple RSUs at the same time.

3. Lagrangian Traffic Flow Simulation

As a basis for this study, we simulate highway traffic while utilizing experimental data for the lead vehicle. The
simulated traffic flow will be used to study how traffic predictions can be facilitated by RSUs. While there exist a
large number of models with different levels of sophistication [30] to describe traffic flow, here we consider one of the
simplest continuum models called Lighthill-Whitham-Richards (LWR) model [31, 32]. This model is typically written
in the Eulerian framework [33, 34, 35] describing the traffic states at a fixed location along the highway. However, in
our problem the RSU is collecting trajectory data from vehicles traveling with the flow, so a vehicle-based Lagrangian
framework is more appropriate [19, 35, 36].

Consider the highway traffic scenario sketched in Fig. 1(a) with the trajectory of the lead vehicle (black) given.
As will be discussed later, this trajectory is used only as boundary condition for traffic simulations, i.e., to generate
traffic data for this study, and it does not have to be known by the RSU in practice. We simulate the traffic flow behind
the lead vehicle by calculating the position X(n, t) of vehicle n as a function of time t. Note that n is not restricted to
integer vehicle numbers. Then the LWR model can be formulated as

∂tX(n, t) = V(−∂nX(n, t)). (1)

This model relates the speed ∂tX to the traffic density −1/∂nX. The relationship is based on the range policy V which
tells the desired speed of vehicles as a function of their distance d from their predecessor (where the distance includes
the vehicle length). Here we utilize the range policy

V(d) =


0 if d ≤ dst,

(d − dst)/τ if dst < d < dgo,

vmax if dgo ≤ d.
(2)

That is, below a standstill distance dst the vehicles intend to stop, above the distance dgo the vehicles shall travel
at the speed limit vmax, and between dst and dgo vehicles increase their speed according to a linear function of the
distance. The inverse of the gradient of this linear increase is τ = (dgo − dst)/vmax, which can be interpreted as a time
gap between subsequent vehicles.

Using the trajectory X(0, t) of the lead vehicle as boundary condition and the equidistant initial spacing X(n, 0) =

X(0, 0) − n
(
dst + τ ∂tX(0, 0)

)
of the following vehicles as initial condition, we simulated the LWR model to obtain

the traffic flow behind the lead vehicle. Figure 2 shows a simulation where the lead vehicle’s trajectory is taken
from experimental data, i.e., from the GPS coordinates of a CV traveling in traffic along highway US-39 in Detroit,
Michigan; see [19] for details of the experiment. The parameters were set to dst = 10 m, vmax = 40 m/s and τ = 1.5 s,
while the total number of simulated follower vehicles is N = 250. We refer to these diagrams as space-time plots.

As indicated in Figs. 1 and 2, the LWR model essentially copies the lead vehicle’s trajectory and obtains the
follower vehicles’ trajectories by shifting it in time and space. In fact, the solution of the linear LWR model (that is
valid between dst < d < dgo) can be expressed as

X(n, t) = X(0, t − nτ) − ndst. (3)

This is equivalent to Newell’s car following model [37] where each vehicle copies the trajectory of its predecessor with
a time shift τ and a spatial shift dst; as highlighted in Fig. 1(b). Alternatively, one can also express this relationship
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Figure 2: Illustration of the traffic flow on a highway where the measured lead vehicle trajectory is black, measured follower vehicle trajectories are
green, the trajectories of simulated vehicles are colored according to their speeds, and connected vehicles are highlighted by blue. A single RSU is
located along the road with communication range R as indicated and it provides traffic predictions for location x = 0. The duration of the potential
coverage zone is indicated by T p = tpe − tps , and the duration of the constant coverage zone is indicated by T c = tce − tcs . The time intervals covered
by predictions are shown by the blue sections.

with the travel time T (n, x) [35] that represents the time moment when vehicle n reaches location x:

T (n, x) = T (0, x + ndst) + nτ. (4)

Note that we have T (n, X(n, t)) = t and X(n,T (n, x)) = x.
The shifted trajectories in (3) imply that congestion waves propagate upstream along the highway with a constant

wave speed w = dst/τ; see Fig. 1(b). For the parameters chosen we have w = 6.67 m/s. This provides us with a
powerful tool for determining which parts of the traffic (i.e., which regions in space and time) are affected by a certain
CV’s motion. This will help us evaluate the availability (coverage) of traffic predictions for different penetration rates
of CVs and placements of the RSUs along the highway. The analysis below is based on the simulated traffic patterns
in Fig. 2 and we utilize the constant wave speed assumption for traffic predictions. The quality of traffic prediction
by the LWR model can be seen from the comparison of measured follower trajectories (green) and selected simulated
CV trajectories (blue). Even though the lead and follower vehicles were on different lanes of the highway during the
experiment, the simulation captures the real follower vehicles’ motion well. We remark that while traffic predictions
can be done by other, more sophisticated models as well (such as the ones in [38, 39, 40, 41, 42, 43]), the regions
where traffic predictions are available in space and time are well-captured by the constant wave speed assumption.

4. Traffic Predictions by a Single Roadside Unit

In this section, we focus on the case where information from a single RSU is available. We derive the time interval
over which traffic predictions can potentially be provided by the RSU for vehicles passing a certain location of interest
along the road. We call this time interval as potential coverage zone. Predictions, however, will only be provided if
there are CVs passing through the communication range of the RSU with sufficient penetration in the traffic flow.
When predictions are available, we say that the corresponding region in space-time is covered by predictions. Then,
we introduce the so-called coverage rate and total time covered as metrics to characterize how large portion of the
space-time the RSU can cover by predictions.
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4.1. Potential Coverage Zone

Consider the scenario in Fig. 2 which shows the simulated traffic flow (colored area) with N = 250 follower
vehicles (251 total vehicles). Assume that an RSU is operating at location xRSU (shown by black dashed line at
xRSU = 1500 m), and it is monitoring traffic within its communication range via connectivity. If the communication
range of the RSU is R, then it can detect vehicles on a road segment of length 2R (indicated by the light gray shaded
region between two black lines for 2R = 500 m). This way the RSU can monitor vehicles over a certain duration of
time and provide traffic predictions for certain regions in space-time, as described below.

Imagine the case when the RSU has the information of all vehicles inside its communication range. Then the
potential coverage zone is the time interval t ∈ [tp

s , t
p
e ] when predictions can be received from the RSU at a location x

of interest; see Fig. 2. Here we focus on predictions upstream the RSU only by assuming x < xRSU − R. According
to the constant wave speed assumption, the potential coverage zone lies between the characteristic lines of slope −w
indicated by dashed blue lines in Fig. 2. The leftmost characteristic line emanates from point C where the lead vehicle
0 enters the RSU’s range at time T (0, xRSU − R), whereas the rightmost characteristic line emanates from point D
where the trajectory of the last vehicle N exits the RSU’s range at time T (N, xRSU + R). According to Fig. 2 and (4),
the potential coverage zone can be obtained by expressing tp

s and tp
e from the following equations:

tp
s −

xRSU − R − x
w

= T (0, xRSU − R) ,

tp
e −

xRSU + R − x
w

= T (N, xRSU + R) = T (0, xRSU + R + Ndst) + Nτ.
(5)

Using w = dst/τ, the duration of the potential coverage zone becomes

T p(xRSU) = tp
e − tp

s = T (0, xRSU + R + Ndst) − T (0, xRSU − R) + (Ndst + 2R)
1
w
. (6)

Here we emphasize that the duration T p depends on the location xRSU of the RSU, the number of vehicles (N + 1)
monitored, and on the traffic conditions (i.e., how the travel timeT changes along the highway), while it is independent
of the location x of interest. These will be important when suggesting a deployment strategy.

Formula (6) contains the travel time of the lead vehicle. This may be estimated using the average speed of
this vehicle. In particular, consider the case where the lead vehicle drives with approximately constant speed, i.e.,
X(0, t) ≈ vt and, equivalently, T (0, x) ≈ x/v. The constant speed assumption eliminates the dependence on the traffic
conditions and the RSU’s location by reducing (6) to

T p ≈ (Ndst + 2R)
(

1
v

+
1
w

)
. (7)

For example, an estimate of the average speed in Fig. 2 is v ≈ 11 m/s which leads to the estimate T p ≈ 723 s. Although
this simplification eliminates the location dependency for a single RSU, it will be useful in the next section where we
consider two RSUs and establish a simple relationship between the distance of the RSUs and coverage.

The duration T p of the potential coverage zone was calculated numerically for various RSU locations using (6)
as plotted by the green curve in Fig. 3(a). It can be observed that T p has a small (about 5%) fluctuation around
its estimated value (7) shown by the dashed brown line. The value of T p is plotted against the number of follower
vehicles in Fig. 3(b). This figure demonstrates that T p increases monotonically with the number of vehicles, i.e.,
monitoring more vehicles increases the amount of potentially available traffic predictions. These conclusions are
supported by (6), since the travel time T monotonically increases with respect to its second argument, and thus T p

monotonically increases with N. It should also be noted from Fig. 3(b) that there is a considerable potential coverage
zone (> 100 s) even for a single vehicle.

Now consider an arbitrary point within the potential coverage zone, and consider the characteristic line passing
through it. This point may potentially receive a prediction based on those pieces of vehicle trajectories that lie within
the RSU’s range and are crossed by the characteristic line. In a certain part of the potential coverage zone the number of
such trajectories is constant, namely 2R/dst. We call this region as constant coverage zone and denote it by t ∈ [tc

s , t
c
e];

see Fig. 2. This zone is located between two characteristic lines: the left one emanates from point A where the lead
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Figure 3: The duration of the potential and constant coverage zones as function of (a) the RSU location xRSU (when N = 250) and (b) the number
N of follower vehicles (when xRSU = 1500 m) for the setup illustrated in Fig. 2. Both panels compare the exact numerical results given by (6) and
(8) to the approximate analytical results obtained from (7) and (9) that use constant speed approximation (with v = 11 m/s).

vehicle 0 exits the RSU’s range, whereas the right one emanates from point B where the last vehicle N enters the
RSU’s range. Similarly to (7), the duration of the constant coverage zone can be determined by

T c(xRSU) = tc
e − tc

s = T (0, xRSU − R + Ndst) − T (0, xRSU + R) + (Ndst − 2R)
1
w
. (8)

Notice the sign change of the R terms compared to the formula of T p. Using the average speed v, this can be approxi-
mated by

T c ≈ (Ndst − 2R)
(

1
v

+
1
w

)
. (9)

For example, an average speed of v ≈ 11 m/s leads to the estimate T c ≈ 482 s.
The duration T c of the constant coverage zone is plotted against the RSU’s location and the number of vehicles

in Fig. 3(a) and (b); see the blue curves computed based on (8) and the red dashed lines obtained from (9). Fig. 3(b)
demonstrates that T c increases monotonically with the number of vehicles, similarly to the trend of T p. Additionally,
according to (8) and Fig. 3(b), the number N of follower vehicles has to be larger than 2R/dst (which is 50 vehicles
in our example) to ensure T c > 0. Note that, however, that this is only needed to ensure the existence of the constant
coverage zone which is defined to perform the analysis below. For the potential coverage zone, on the other hand, we
still have T p > 0 even for a single vehicle.

4.2. Coverage Rate and Total Time Covered

Up to this point, we considered the ideal case where the RSU has the information of all vehicles inside its com-
munication range. In reality, the RSU only has access to the information of connected vehicles (CVs) equipped with
V2X devices. Consider Fig. 2 and assume that only some of the vehicles are CVs (blue trajectories). The CVs may
be human-driven or possess different levels of automation. The number of CVs in traffic is characterized by the pen-
etration rate λ. In particular, we assume that connected vehicles are uniformly and randomly distributed among all
vehicles, and the probability of a vehicle to be connected is the penetration rate λ. As a result, the connectivity of
vehicles can be considered as a Poisson point process: when enumerating the vehicles from upstream to downstream,
the event that a vehicle is connected has the same probability for each individual vehicle independent of other vehi-
cles. Furthermore, we assume that the penetration rate is approximately constant over the duration of our experiment.
Note, however, that our results are applicable to any penetration level at any hour of the day. For a penetration rate λ,
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the number of CVs approaches λN for large N. Fig. 2 shows an example where vehicles are selected to be connected
with penetration rate λ = 2%.

Once the RSU monitors the trajectories of the CVs within its range, it can provide traffic predictions for certain
points of the potential coverage zone (see the horizontal blue lines in Fig. 2). These points are determined by the
projection of the CV trajectories along the characteristic direction (see gray shading). An arbitrary point inside the
potential coverage zone may receive a prediction if its characteristic line crosses at least one CV trajectory within
the RSU’s range. If a point receives a prediction, we say the point is covered. To indicate coverage, we use the
indicator function 1cov(t) that gives 1 when time t is covered and 0 otherwise. Coverage has a certain probability that
depends on the probability of the corresponding vehicles being connected. As shown later, points inside the constant
coverage zone have the same probability of being covered because the number of vehicles that can potentially provide
predictions is the same.

To quantify coverage, we now define the total time covered Ttot as the expected duration of coverage over a selected
interval t ∈ [ts, te]:

Ttot = E

[∫ te

ts
1cov(t)dt

]
. (10)

This is a useful metric to determine where the RSU shall be located to maximize the amount of available predictions.
From this, the definition of the coverage rate follows naturally, which is the expected coverage of the points in the
selected time horizon:

C = E

[
1

te − ts

∫ te

ts
1cov(t)dt

]
. (11)

These definitions can be used for both the potential coverage zone:

T p
tot = E

∫ tp
e

tp
s

1cov(t)dt

 , Cp = E

 1
T p

∫ tp
e

tp
s

1cov(t)dt

 , (12)

and the constant coverage zone:

T c
tot = E

[∫ tc
e

tc
s

1cov(t)dt
]
, Cc = E

[
1

T c

∫ tc
e

tc
s

1cov(t)dt
]
. (13)

We use both numerical and analytical calculations to evaluate these quantities. To obtain the total time covered
and coverage rate numerically, we select some of the vehicles to be connected based on uniform random distribution,
where the probability of being connected is given by the penetration rate λ. Then, we consider those parts of the CV
trajectories that lie inside the RSU’s communication range (thick blue), and project these parts to the time axis as
indicated in Fig. 2. This projection implies coverage for the dark gray shaded space-time regions, and consequently,
the blue domain at the location of interest. The indicator function 1cov(t) is equal to 1 in this blue domain and 0
outside. Then, we can calculate the total time covered and coverage rate with (12) and (13). We repeat this calculation
10000 times by randomly reassigning the CVs each time, and we average the results to obtain an approximation of
the expected value.

While analytical expressions for Cp are hard to obtain, the definition of the constant coverage zone leads to a
simple formula for Cc as given below. We refer to Cc as the constant coverage rate. Consider an arbitrary point inside
the constant coverage zone and draw a characteristic line through this point. The number of vehicle trajectories crossed
by the characteristic line within the RSU’s communication range is 2R/dst, irrespective of which point we consider
in the constant coverage zone. The probability of the selected point to be covered is equal to the probability of at
least one of these 2R/dst subsequent vehicles to be connected. Since this probability is the same regardless of which
point we choose, the constant coverage rate Cc is equal to the probability of an arbitrary point to be covered in the
constant coverage zone. To calculate this probability, we go through the 2R/dst subsequent vehicles from upstream to
downstream and we sum the probabilities that a vehicle is connected while other vehicles upstream are not connected.
As the connectivity of each vehicle is a Poisson process, the probability that the m-th vehicle is connected while
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Figure 4: Numerical and analytical results for the constant coverage rate as a function of the penetration rate for a single RSU with communication
range R = 250 m.

Table 2: The constant coverage rate of a single RSU at different penetration rates and RSU communication ranges.

Penetration Rate, λ
RSU Range, R

100m 250m 500m

2% 33% 63% 86%
5% 63% 92% 99%
10% 86% 99% 99.99%

vehicles upstream are not connected is the time between events of the Poisson process, thus equals λe−λm according
to the exponential distribution. Therefore, the constant coverage rate Cc can be calculated as

Cc =

∫ 2R/dst

0
λe−λmdm = 1 − e−λ

2R
dst , (14)

where a continuum of vehicles was assumed when using integral instead of a sum. Note that Cc is determined by the
penetration rate of CVs and the communication range of the RSU, while it depends neither on the RSU location nor
on the traffic conditions.

The numerical and analytical results for the constant coverage rate Cc as a function of the penetration rate are plot-
ted in Fig. 4 by solid blue and dashed red lines, respectively. Notice the remarkable agreement between the numerical
and analytical results. Since the constant coverage rate is affected by the penetration rate of connectivity, it may not
reach 100%. However, the figure demonstrates that the constant coverage rate Cc approaches 100% exponentially as
the penetration rate is increased. Therefore, equipping more vehicles with V2X communication devices can lead to
significant benefits, and even a few percents of penetration can already achieve high coverage. Increasing the RSU’s
communication range can further improve the constant coverage rate Cc, although this requires improving the roadside
infrastructure. The constant coverage rate values for some representative penetration rates and communication ranges
are listed in Table 2.

Based on the constant coverage rate Cc and the duration T c, we can obtain the total time covered T c
tot. Furthermore,

9



Figure 5: The total time covered for the potential and constant coverage zones as function of (a) the RSU location xRSU (when N = 250) and (b)
the number N of follower vehicles (when xRSU = 1500 m) for the setup illustrated in Fig. 2. The CV penetration rate is set to λ = 2%. Both
panels compare the exact numerical results given by (12) and (13) to the approximate analytical results obtained from (15) that uses constant speed
approximation (with v = 11 m/s).

using Cc and T p we get an over-approximation of T p
tot:

T c
tot(xRSU) = CcT c(xRSU) =

(
1 − e−λ

2R
dst

) (
T (0, xRSU − R + Ndst) − T (0, xRSU + R) + (Ndst − 2R)

1
w

)
≈

(
1 − e−λ

2R
dst

)
(Ndst − 2R)

(
1
v

+
1
w

)
,

T p
tot(xRSU) ≤ CcT p(xRSU) =

(
1 − e−λ

2R
dst

) (
T (0, xRSU + R + Ndst) − T (0, xRSU − R) + (Ndst + 2R)

1
w

)
≈

(
1 − e−λ

2R
dst

)
(Ndst + 2R)

(
1
v

+
1
w

)
,

(15)

cf. (6)-(9) and (14). Compared to T p
tot, T c

tot neglects the predictions outside the constant coverage zone but inside the
potential coverage zone. For a large number of vehicles monitored, the relative difference between these two metrics
becomes negligibly small.

The numerical and analytical results for T p
tot and T c

tot are shown in Fig. 5 for CV penetration rate λ = 2%. Fig. 5(a)
highlights that the metrics T p

tot and T c
tot depend on the location of the RSU and follow a similar trend. Therefore, either

one of these metrics can be used to determine the optimal RSU placement and guide RSU deployment, while T c
tot is

easier to analyze. In our single RSU example, the total time covered T c
tot is maximized in the congested region around

xRSU ≈ 1100 m. This indicates the optimal placement of a single RSU. Meanwhile Fig. 5(b) indicates that the total
time covered increases monotonically with the number of vehicles monitored. This may reflect requirements on how
many vehicles need to be monitored in order to avoid a certain level of coverage.

5. Sparse Deployment of Multiple Roadside Units

The deployment of multiple RSUs is a critical concern for establishing a connected highway infrastructure. In this
section, we first analyze a baseline for multiple RSU deployment, then we propose a sparse RSU deployment strategy
and compare it with the baseline. We investigate how the distance between two RSUs affects the prediction capability
if their mean position is fixed. This allows one to decide the optimal distance between RSUs and thus sequentially
determine the placement of multiple RSUs along an instrumented highway segment. We use a reasonable assumption
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Figure 6: Baseline scenario for multiple RSU deployment where five RSUs are located such that any point along a road segment lies within the
communication range of one of the RSUs.

that the RSUs have the same communication range R. In addition to the parameters of the previous section, the
distance D between the RSUs will be considered when developing the sparse RSU deployment strategy.

Before proposing our strategy, we introduce a baseline method for deploying multiple RSUs, shown in Fig. 6.
In this baseline, RSUs are placed such that the boundaries of their communication ranges coincide, creating a dense
network of RSUs along the highway. This method allows communication between the infrastructure and the CVs
anywhere on the instrumented highway segment, although it requires a large number of RSUs implying large in-
strumentation and maintenance costs. As an example, consider the setup of five RSUs in Fig. 6, each with range
R = 250 m, that provides V2I connectivity from 250 m to 2750 m along the road. Numerical results show that this
setup has a potential coverage zone of duration T p = 1183 s and a total time covered T p

tot = 947 s with a penetration
rate of 2%. These will be used to make comparison with our proposed sparse RSU deployment strategy discussed
below.

5.1. Critical Distance and Potential Coverage Zones
In an effort to reduce the RSU deployment cost (i.e., the number of RSUs) while maintaining large coverage (i.e.,

potential coverage zone and total time covered), we focus on the deployment of two RSUs in the rest of the paper.
Nevertheless, the results of the two-RSU deployment can be easily extended to the deployment of more, sparsly
distributed RSUs along the road by the help of the metrics proposed in Sec. 4.

Consider the two-RSU setup in Fig. 7, where the locations of the RSUs are x1 ≥ x2 and their distance is D = x1 − x2.
For a given number of simulated vehicles (e.g., N + 1 = 251), the potential and constant coverage zones can be de-
termined for each individual RSU separately, according to Sec. 4. We denote the durations of the constant coverage
zones by T c

1 and T c
2 . If the distance D of the two RSUs is large enough, the two time zones have no overlap and the

problem reduces to two separate single RSU cases discussed in Sec. 4; see the illustration in Fig. 7(a). Note that in this
case there is a region between the individual coverage zones where traffic prediction cannot be provided by any of the
RSUs. At a critical distance D = Dc the individual coverage zones “touch” each other as illustrated in Fig. 7(b). When
the distance D is less than the critical Dc, there exists a time zone of duration T c

12 that can potentially be covered by
predictions via both RSU; see Fig. 7(c). Here we first calculate the critical distance, and then we analyze the constant
coverage rate and the total time covered for D ≤ Dc.

We calculate the critical distance Dc by formulating the duration T c
12 of the double-covered time zone and taking

T c
12 = 0. Similar to (8), we can write

T c
12 =

T (0, x2 − R + Ndst) − T (0, x1 + R) + (Ndst − 2R − D) 1
w if 0 ≤ D ≤ Dc,

0 if D > Dc.
(16)

For the critical distance the travel times in the top row are equal (cf. Fig. 7(b)), and consequently, T c
12 = 0 yields

Dc = Ndst − 2R. (17)
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Figure 7: Setup with two RSUs where the distance of the RSUs is (a) larger than the critical distance D > Dc, (b) equal to the critical distance
D = Dc and (c) smaller than the critical distance D < Dc.

Note that Dc depends only on the number (N + 1) of vehicles monitored, the standstill distance dst and the RSU’s
communication range R. This implies a trade-off between monitoring more vehicles ((N + 1)) and placing the RSUs
farther apart (Dc). Meanwhile, neither the RSU locations nor the traffic conditions affect the value of Dc. Furthermore,
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Figure 8: (a) The duration of the potential and constant coverage zones for two RSUs as a function of their distance. (b) Coverage rate Cc
12 as a

function of RSU distance. (c) The total time covered by two RSUs as a function of their distance. The parameters are R = 250 m and λ = 2%. The
mean position of the two RSUs is fixed to the location x = 1500 m. The exact numerical results of T p and T c

tot given by (6) and (10) are compared
to the approximate analytical results obtained by variants of (7) and (23) that use constant speed approximation (with v = 11 m/s). The exact
numerical results for the baseline are also shown for comparison.

we assume that a sufficient number of vehicles (N > 2R/dst) is monitored so that the critical distance is positive. In
the example of Fig. 7 the critical distance is Dc = 2000 m. Based on T c

12, the durations of the time zones which can be
covered by one of the RSUs only are

T c
1 = T c(x1) − T c

12,

T c
2 = T c(x2) − T c

12,
(18)

where T c(x1) and T c(x2) are given by formula (8) derived for a single RSU.
Considering the union of the coverage zones, Fig. 8(a) plots the duration T p

1 + T p
2 + T p

12 of the potential coverage
zone (green) and the duration T c

1 + T c
2 + T c

12 of the constant coverage zone (red and blue) as a function of the distance
D. The result for the baseline method with five RSUs is also indicated (black). It can be observed that the duration of
the potential coverage zone for two RSUs approaches the one for the five-RSU baseline as D approaches Dc = 2000 m.
This indicates that the same potential coverage zone can be achieved with significantly less RSUs if the number of
vehicles monitored is large enough.

5.2. Coverage Rate and Optimal RSU Distance Based on Total Time Covered
Now we calculate the constant coverage rates Cc

1, Cc
2 and Cc

12 of the three time zones associated with T c
1 , T c

2 and
T c

12, respectively, while assuming D ≤ Dc. The coverage rates Cc
1 = Cc

2 = Cc of the regions covered by a single RSU
only can be calculated from (14), while the coverage rate Cc

12 related to both RSUs is derived below, by following the
analysis presented for the single RSU setup.

We distinguish two scenarios: (i) when 0 ≤ D ≤ 2R and (ii) when D > 2R. When 0 ≤ D ≤ 2R the communication
ranges of the two RSUs intersect, and this case can be considered as a single RSU setup with the larger range D + 2R,
i.e., the union of the ranges of the two RSUs. Therefore, Cc

12 can be calculated by (14) using the communication
range D + 2R instead of 2R. When D > 2R, the communication ranges of the two RSUs no longer intersect. Based
on the discussion about the coverage rate of a single RSU, there is a certain set of vehicles for each RSU that can
potentially provide prediction for an arbitrary point in the zone of duration T c

12. For two RSUs the number of vehicles
to potentially provide coverage is doubled compared to the single RSU case. Therefore, (14) applies with the exponent
4R/dst instead of 2R/dst. The expression of Cc

12 is summarized as

Cc
12 =

1 − e−λ
2R+D

dst , if 0 ≤ D ≤ 2R,

1 − e−λ
4R
dst , if D > 2R.

(19)

The coverage rates of three or more RSUs could be derived analogously.
The analytical result (19) for the coverage rate Cc

12 is plotted as a function of the distance D in Fig. 8(b), together
with its numerical counterpart based on (11). From point of view of predictions, the two RSUs function as a single
RSU when they are at the same location, and thus, Cc

12 is minimal for D = 0. As the RSUs are moved apart, the
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coverage rate Cc
12 increases. Once the RSUs are at a distance greater than two times their communication range

(D > 2R), the coverage rate saturates at a level Cc
12,max that is equal to the coverage rate of a single RSU with doubled

communication range. Finally, it is important to note that the coverage rate Cc
12,max associated with two RSUs is

smaller than twice of the coverage rate Cc of a single RSU. This can be shown by

2Cc −Cc
12 ≥ 2Cc −Cc

12,max = 2
(
1 − e−λ

2R
dst

)
−

(
1 − e−λ

4R
dst

)
=

(
1 − e−λ

2R
dst

)2
> 0. (20)

This observation implies that it is more efficient to cover different time zones with the two RSUs instead of double-
covering a single region. This will be important in terms of finding the optimal distance of the RSUs, which is
discussed below.

To calculate the optimal RSU distance, we calculate the total time covered T c
tot:

T c
tot = T c

1Cc
1 + T c

2Cc
2 + T c

12Cc
12, (21)

cf. (15). Here, T c
1 , T c

2 , and T c
12 can be obtained from (8) and (16), while Cc

1, Cc
2 and Cc

12 can be calculated from (14)
and (19). Maximizing the value of T c

tot yields the optimum RSU deployment in terms of achieving the largest amount
of traffic predictions from the RSUs.

Now we derive the optimal distance Dopt between the two RSUs that maximizes the total time covered T c
tot for the

case D ≤ Dc. First, we derive Dopt for the simplest case where the lead vehicle drives with approximately constant
speed, i.e., its motion is given by X(0, t) ≈ vt, or equivalently, T (0, x) ≈ x/v. Then, the duration of the potential
coverage zones given by (16) and (18) simplify to

T c
12 ≈

(
1
v

+
1
w

)
(Dc − D),

T c
1 ≈ T c

2 ≈

(
1
v

+
1
w

)
D,

(22)

cf. (9). With Cc
1 = Cc

2 = Cc, (21) and (22) lead to the total time covered:

T c
tot ≈

(
1
v

+
1
w

) (
(2Cc −Cc

12)D + Cc
12Dc

)
=


(

1
v + 1

w

) (
(1 + e−λ

2R+D
dst − 2e−λ

2R
dst )D + (1 − e−λ

2R+D
dst )(Ndst − 2R)

)
, if 0 ≤ D ≤ 2R,(

1
v + 1

w

) (
(1 + e−λ

4R
dst − 2e−λ

2R
dst )D + (1 − e−λ

4R
dst )(Ndst − 2R)

)
, if D > 2R.

(23)

Since 2Cc −Cc
12 is positive according to (20), the total time covered T c

tot monotonously increases as a function of the
distance D. Therefore, for constant speeds, the optimal deployment strategy is putting the two RSUs at the largest
possible distance that is the critical distance Dopt = Dc.

For non-constant speed, the total time covered T c
tot is affected by the trajectory of the lead vehicle through (8)

and (16). Still, the average speed of this vehicle can be used in (23) for approximate analytical results. Figure 8(c)
shows these analytical results (red) for T c

tot as a function of the distance D in the range 0 ≤ D ≤ Dc. Here the mean
position of the two RSUs is fixed to the location x = 1500 m, and the approximation (23) uses the average speed
v = 11 m/s. Furthermore, numerical results for T c

tot (blue) and T p
tot (green) based on (10) are also indicated. Notice

the agreement between the analytical and numerical results, and note that the trends of T c
tot and T p

tot are the same. This
shows that the analytical formula (23) for T c

tot can be directly used for guiding RSU deployment.
In this example, the total time covered is maximized at the critical distance (Dopt = Dc) despite the speed fluctua-

tions. Thus, the optimal deployment strategy within D ≤ Dc is putting the two RSUs at the critical distance D = Dc.
Note that the numerical analysis is valid only for this specific data set, although we have observed similar behavior
considering other data sets as well. Still, if prior knowledge is available about how vehicle trajectories typically look
like along a certain highway segment, one can find the optimal RSU deployment strategy by evaluating T c

tot or T p
tot.

Finally, the total time covered T p
tot for the five-RSU baseline is also indicated by a black line in Fig. 8(c). The

maximum amount of available traffic predictions (total time covered T p
tot) for two RSUs is about 75% of the five-

RSU baseline, while the instrumentation costs (number of RSUs) are reduced to 40%. Meanwhile, the two-RSU
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setup provides the same potential coverage zone duration as the five-RSU baseline; see Fig. 8(a) at D = Dc = 2000 m.
Therefore, the optimal two-RSU deployment strategy at the critical distance is a reasonable alternative to the dense
RSU installment baseline when deployment costs are of concern.

6. Conclusion

We investigated the ability of connected roadside infrastructure to provide traffic predictions along the highway
based on monitoring the trajectories of connected vehicles (CVs) via roadside units (RSUs). We highlighted that the
finite range of vehicle-to-infrastructure (V2I) communication enables the RSUs to record segments of CV trajectories,
which allow traffic prediction over certain intervals of time. For the case of a single RSU, we derived both analytically
and numerically the time intervals when a certain location can potentially receive predictions about future traffic.
We quantified the amount of available predictions via proposed metrics called coverage rate and total time covered.
Furthermore, we analyzed how the penetration rate of CVs in traffic and the communication range of the RSU affect
the availability of predictions. We showed that even as low as 5% penetration of CVs can enable large amount of
predictions (around 90% constant coverage rate) given a several hundred meters of RSU communication range.

Based on the above metrics, we proposed strategies for deciding where to deploy RSUs along a highway segment
using prior knowledge about local traffic conditions such that the amount of available traffic prediction is maximized.
We determined the optimal distance of two neighboring RSUs. We found that it is beneficial to place the RSUs farther
away from each other (around a so-called critical distance) so that their predictions do not overlap. The performance
of this deployment strategy was compared to a baseline method involving a dense network of RSUs, and our sparse
RSU deployment strategy was justified to be preferable considering the trade-off between available traffic prediction
and RSU deployment cost. Although the analysis in this paper was restricted to at most two RSUs for simplicity, the
proposed deployment strategy can be applied straightforwardly to design the placement of larger numbers of RSUs.
On one hand, one can deploy RSUs sequentially by utilizing the results obtained for the two RSU case. On the other
hand, the metrics introduced in this paper can be evaluated for any number of RSUs.

For the sake of numerical case studies, we used a simulated traffic flow where the trajectory of the lead vehicle was
taken from experimental data. Our future work will focus on experiments to validate our results. We plan to collect
trajectory data from CVs by using RSUs on highways in field experiments, and we plan to analyze the available traffic
predictions by utilizing the collected data. We also plan to add other sensors in our experiment, such as cameras, to
gather more information about the traffic and facilitate the traffic prediction.
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